
Matpar: Parallel Extensions to Matlab

Version 1.1.1

Paul Springer

September 22, 1999

Matpar Documentation version 1.1.1

2

1. Introduction

This document describes the 1.1.1 release of Matpar. Matpar is a set of parallel extensions
to the Matlab program. (Matlab is a commercial program used by scientists and engineers
to perform matrix operations.) These extensions provide a much faster alternative to some
of the Matlab functions. In some cases a Matpar function is more than 30 times faster than
the equivalent Matlab function.

Part of Matpar resides on the workstation running Matlab. This part is called the client.
The other part of Matpar resides on a parallel computer, and is called the server. As of the
current release, Matpar server software has been written and tested for HP/Convex
Exemplar SPP2000 computer (called ÒneptuneÓ at JPL/Caltech) and a Beowulf computer
(PC cluster running Linux)..

To make use of Matpar, the user calls a Matpar function from within Matlab. For example,
to use the Matpar QR factorization call, the user calls p_qr(), instead of the Matlab qr() rou-
tine. Some Matpar routines have been implemented as Matlab ÒMÓ files and some as
ÒMEXÓ files. In either case, the Matpar software checks to see if this is the first such call it
has received since the user began this Matlab session. If so, Matpar uses communication
software called PVM to initiate a session on the designated parallel computer. This action
starts up the Matpar server software. The server software continues running until the user
exits Matlab with the ÒquitÓ command.

For each call to Matpar, the software sends the command and necessary data to the server,
using PVM. The server software then executes the command, and sends back the data.
The client software receives the returning data, and presents it to Matlab in the expected
format.

2. Installation

Several steps must be followed before you can run Matpar for the first time on a parallel
computer. These steps are covered in this chapter. Once you follow these steps, it should
never again be necessary to repeat them for that parallel computer.

2. 1 Unpacking the Tar file

As of the date this document was written, the software and documentation are available for
download from http://www-hpc.jpl.nasa.gov/PS/MATPAR. The appropriate files should
be downloaded to the corresponding computer, and unpacked using the command Ògunzip
matpar1.1.1.server.tar.gzÓ, followed by Òtar -xvf matpar1.1.1.server.tar. If you are using
a JPL/Caltech computer system, read the following to determine if you need to do this step
on the computer you will be using.

Matpar Documentation version 1.1.1

3

2. 2 Server Installation onto the HP SPP2000 Parallel Computer

2. 2. 1 SPP2000 Installation

2.2.1.1 Signing on

In order to use the HP SPP2000 as a server, you must have an account you can access on
the server, with a username and password. (To get information about getting an account at
JPL, call 3-2729.) You should plan to enter your password each time to begin a session
which uses the JPL / Caltech SPP2000. This means you must put an ÒsoÓ parameter entry
into the hostfile, matpar.hosts, on the workstation side to allow for this (see section 2.4.6).

2.2.1.2 Making Matpar

Matpar requires several other software packages in order to run on the server. These
include BLAS, BLACS (built on PVM, not MPI), LAPACK, ScaLAPACK, and PVM.
These should already be available on the parallel computer, but if not, they can be
downloaded from http://netlib.org. Currently the software has only been tested with ScaLA-
PACK version 1.6.

Modify the file Òmakefile.csppÓ to point to the proper locations of the libraries. Leave the
DEBUG flags set as they are in the file. Then rename the file to ÒmakefileÓ and do a make.
This process produces an executable called ÒmatparÓ.

2.2.1.3 Installing the software

PVM is responsible for initiating the server side of the software. It does this by launching
a particular program that it expects to find in a particular directory. For this reason you
need to make a directory called Òpvm3Ó in your home directory. Within Òpvm3Ó you need
to make a directory called ÒbinÓ and within the ÒbinÓ directory another directory called
ÒCSPPÓ. Put a link to matpar in this new directory. You can do so by asking your system
administrator, or by entering the following commands from your home directory:

cd pvm3/bin/CSPP
ln -s /opt/local/matpar/matpar matpar

In the instance shown above, matpar has been previously installed in the directory
Ò/opt/local/matparÓ.

In the same pvm3/bin/CSPP directory, you need to put some shell scripts that will be
invoked by the client computer. One shell script must exist for each processor
configuration listed in the matpar.hosts file on the client. Currently there are scripts for 1,
4, 16, 32 and 64 processors. If necessary it should be easy to make others by using the
ones given as examples. The scripts are named pvmdsz1, pvmdsz4, pvmdsz16, pvmdsz32
and pvmdsz64. Samples of these files are included in the release. These samples were
developed for use with the bsub scheduling utility. At the time of development, bsub
contained a bug that merged stdout and stderr together, so perl was invoked as part of the
script to separate the streams for the sake of PVM. Modify these scripts as necessary.

2.2.1.4 Environment variables

Several UNIX environment variables must be set on the server side before you can use
Matpar. There must be lines in the Ò.cshrcÓ file in your home directory that set these vari-
ables. See the system administrator for help on this. The lines are as follows:

Matpar Documentation version 1.1.1

4

setenv PVM_ROOT /opt/pvm3.3
setenv PVM_ARCH `$PVM_ROOT/lib/pvmgetarch`

The first line tells the server where the server version of PVM is. The second line is used
to tell PVM what kind of server is running the program.

2. 3 Server Installation onto a Beowulf Parallel Computer

2. 3. 1 Beowulf Installation

2.3.1.1 Signing on

Matpar has been ported to a Beowulf computer running Linux. In order to use a Beowulf
as a server, you must have an account you can access on the server, with a username and
password. You should plan to enter your password each time to begin a session. This
means you must put an ÒsoÓ parameter entry into the hostfile, matpar.hosts, on the work-
station side to allow for this (see section 2.4.6).

2.3.1.2 Making Matpar

Matpar requires several other software packages in order to run on the server. These
include BLAS, BLACS (built on PVM, not MPI), LAPACK, ScaLAPACK, and PVM.
With the possible exception of PVM, these should already be available on the parallel
computer, but if not, they can be downloaded from http://netlib.org. Currently the software
has only been tested with ScaLAPACK version 1.6.

If your Beowulf nodes are on a private subnet not visible from outside the cluster, Matpar
requires a special version of PVM developed at JPL. This version of PVM allows the
nodes to be visible to the PVM daemon running on the client. As of the writing of this
document, this version of PVM has been completed, but not yet released. Release is
anticipated in the very near future.

Modify the file Òmakefile.linuxÓ to point to the proper locations of the libraries. Leave the
DEBUG flags set as they are in the file. Then rename the file to ÒmakefileÓ and do a make.
This process produces an executable called ÒmatparÓ.

2.3.1.3 Installing the software

PVM is responsible for initiating the server side of the software. It does this by launching
a particular program that it expects to find in a particular directory. For this reason you
need to make a directory called Òpvm3Ó in your home directory. Within Òpvm3Ó you need
to make a directory called ÒbinÓ and within the ÒbinÓ directory another directory called
ÒLINUXÓ, or ÒBEOLINÓ if using the special version of PVM mentioned above. Put a link
to the matpar program you previously made, in this new directory. You can do so by
asking your system administrator, or by entering the following commands from your home
directory:

cd pvm3/bin/BEOLIN
ln -s /opt/local/matpar/matpar matpar

In the instance shown above, matpar has been previously installed in the directory
Ò/opt/local/matparÓ, and the special BEOLIN version of PVM is being used.

Matpar Documentation version 1.1.1

5

2.3.1.4 Environment variables

Several UNIX environment variables must be set on the server side before you can use
Matpar. There must be lines in the Ò.cshrcÓ file in your home directory that set these vari-
ables. See the system administrator for help on this. The lines are as follows:

setenv PVM_ROOT /usr/local/pvm3.4.1
setenv PVM_ARCH BEOLIN

The first line tells the server where the server version of PVM is. The second line is used
to tell PVM what kind of server is running the program. In this example the BEOLIN
version of PVM is being used. Otherwise use the keyword LINUX instead.

If you are using the BEOLIN version of PVM, take note of the PROC_LIST environment
variable which is used to specify the names of the nodes on the machine. See the
documentation that comes with this version of PVM for more information

2. 4 Client Installation onto the Workstation

2. 4. 1 Requirements

This release, 1.1.1, has only been tested on SunOS 5.5 and 5.6. It must be compiled with
MATLAB version 4, although once compiled it will run with MATLAB 5.

2. 4. 2 PVM

The workstation which runs the client software must have PVM version 3.4.1 or later
available to it. Furthermore, it is strongly recommended that the version of PVM to be
used have its UDPMAXLEN parameter (found in the file global.h) set to 16384 or higher.
If this is not done, Matpar will run extremely slowly, because of long data transmissions
times. Check with the system administrator to see with what settings PVM was installed.

2. 4. 3 Making Matpar

Download the file matpar1.1.1.sun.tar.gz into the desired directory. Type Ògunzip
matpar1.1.1.sun.tar.gzÓ followed by Òtar xvf matpar1.1.1.sun.tarÓ. Modify the makefile
paths as necessary for your setup. Make sure that the MATLAB 4 cmex compiling script is
in your path, and type ÒmakeÓ. This should compile and link the necessary modules.

2. 4. 4 Installing the software

If the files produced by the make command are put into the MATLAB toolbox directory,
the user need not be concerned about the location of the matpar code. Otherwise, the
LD_LIBRARY_PATH environment variable must be set (see below).

2. 4. 5 Environment variables

Several UNIX environment variables must be set on the client side before you can use
Matpar. There must be lines in the Ò.cshrcÓ file in your home directory that set these
variables. See the system administrator for help on this. Sample lines are as follows:

setenv PVM_ROOT /home/pvm/pvm_test/pvm3
setenv PVM_ARCH `$PVM_ROOT/lib/pvmgetarch`
setenv LD_LIBRARY_PATH pppp

Matpar Documentation version 1.1.1

6

set path = ($path $PVM_ROOT/lib)

The first line tells the server where the server version of PVM is. In this case a special
version of PVM is invoked for Matlab, one which transmits data back and forth more
efficiently between the workstation and the server. Change this line if your version of
PVM is in a different location. The second line is used to tell PVM what kind of
workstation is running the program. The third line is needed so the operating system
knows from where the Matpar code should be loaded. It is not, however, needed on
networks where the Matlab startup script has been modified to set this variable correctly. If
you do need this line, replace pppp with the name of the directory into which you put the
Òmpp.soÓ

2. 4. 6 The host file

The host file for Matpar, called matpar.hosts, is similar to the host file used by PVM. It
must be located in your current directory, and is mandatory. Blank lines are permitted in
the file, and any line beginning with a # character is considered to be a comment line. Each
line must contain 3 fields, separated by spaces or tabs. The first field contains the name of
a parallel computer to which a connection can be made. The second field may itself contain
spaces, and comprises the parameters passed to PVM. The parameters are separated by
spaces within the field.

The main parameters of interest are the ÒsoÓ parameter and the ÒdxÓ parameter. The ÒsoÓ
parameter is used to indicate that no Ò.rhostsÓ file is on the parallel computer, and that
therefore a password is required. The parameter takes the form Òso=pwÓ.

The ÒdxÓ parameter is required, and tells the program where to find pvmd, the PVM
daemon, on the server. It takes the form Òdx=/usr/bin/pvmdÓ where the path shown should
be replaced by whatever path is appropriate. When individual script files are needed for
each processor configuration, an entry for each such configuration must appear in the hosts
file, as shown below.

The third field tells how many nodes. This is mainly for use with the SPP2000, where the
pvmd program must be invoked with a parameter that tells how many nodes to run on. For
the SPP2000, the dx parameter points to a shell script which in turn invokes the pvmd pro-
gram with the proper parameters. In the present release pvmdsz4 is used when running on
4 nodes, pvmdsz16 for 16, etc.

A sample matpar.hosts file follows.

matpar.hosts file for the SPP2000 “neptune”

4 entries for the SPP2000, for 4, 16, 32 and 64 processors

neptune dx=/home/myname/pvm3/bin/CSPP/pvmdsz4 4
neptune dx=/home/myname/pvm3/bin/CSPP /pvmdsz16 16
neptune dx=/home/myname/pvm3/bin/CSPP /pvmdsz32 32
neptune dx=/home/myname/pvm3/bin/CSPP /pvmdsz64 64

3. Running with Matpar

The Matpar code does not run until one of its calls (beginning with the characters Òp_Ó) is
invoked. Some time before such a call is made, you must have begun the PVM daemon on

Matpar Documentation version 1.1.1

7

the workstation, called pvmd. Start the daemon by opening a new window on your work-
station, and typing ÒpvmdÓ. Make sure this is done in a separate window, and is not run in
the background, so that you can be prompted for a password (if necessary) in the pvmd
window. If the system complains that it canÕt find pvmd, check your path to be sure that it
includes the proper PVM directory (see section 2.4.5).

The first Matpar command other than p_config() will initiate the session on the parallel
computer. The Matpar commands can be typed directly in to Matlab for immediate execu-
tion, or they may be part of a Matlab program file. When the first command is executed,
Matpar will print out certain status messages. An example is shown below:

Initiating Matpar 1.1.1
Adding host neptune.cacr.caltech.edu to virtual machine...
Starting 4 matpar tasks
in 2 rows and 2 columns

This message shows which parallel computer is being used, how many nodes have been
requested, and what configuration the nodes are in. This step can take some time, if many
nodes have been requested, or if someone else is using the machine, and your request must
wait its turn.

When Matpar sends a matrix to the server, you will see a message like the following:

Sending to 524289

If the matrix is so large that is must be broken up into pieces in order to send it efficiently,
Matpar will display the following message:

Sending matrix block

If the result from the server is also too large, you will see this message:

Unpacking block

When you exit your Matlab session by typing ÒquitÓ, this will also terminate the server part
of Matpar running on the parallel computer, and will terminate the pvmd program that you
began as part of the run. So pvmd must be restarted when you begin another Matlab ses-
sion which uses Matpar.

If there is a problem on the server computer which causes the Matpar server code to abort,
the next time you run Matpar you may see the message

No tasks started because of Duplicate Host error
May have to remove /tmp/pvmd.xxx file on remote system

This indicates that PVM on the server did not exit cleanly, and left a temporary file which
must be deleted before you can run. The file to be deleted is in the directory Ò/tmpÓ and is
called Òpvmd.xxxÓ, where ÒxxxÓ represents your user ID on the server.

4. Constraints

Matpar users are constrained by the same restrictions affecting other users of the parallel
computers. On the JPL/Caltech HP SPP2000 ÒneptuneÓ, Matpar is run as an interactive
job, and as such is normally limited to an execution time of 30 minutes, and is restricted to
using 64 nodes at most. The number of nodes specified in the p_config() command must
be a power of 2. If neptune is unable to allocate the requested nodes immediately, the
request will be put into a queue and Matpar wonÕt begin until it comes out of the queue.

Matpar Documentation version 1.1.1

8

To request a particular number of processors on neptune, a unique script must be invoked
on the SPP2000 (this is done automatically by Matpar). In this release scripts are written
only for processor counts of 4, 16, 32, and 64. If another job size is desired, a new script
is easily written, and a new entry must be made into matpar.hosts.

Memory constraints impose limitations on the size of matrices which can be handled. For
example, on an SPP2000 with 4 GB of memory per hypernode, a matrix larger than 6000
x 6000 elements may be too large. For the Bode plot calculations, the size of the state
matrix must be even smaller--perhaps as small as 2000 x 2000 elements. The SPP2000
will not crash if these limits are exceeded, but will begin using virtual memory, and will
run very slowly.

ScaLAPACK, a set of library routines which Matpar uses for parallel matrix calculations,
requires that the data be distributed across the nodes in certain ways, which can vary de-
pending on the operation being performed. When a matrix is passed to the server as part of
a Matpar calculation, Matpar distributes the data correctly for that operation. However, if
the data is initially passed as a persistent matrix, or if a result from a previous operation is
made persistent and used in a succeeding operation, the data may not be distributed cor-
rectly. Incorrect data distribution will produce an error, but this can only happen if persis-
tence is used. Once the new version of ScaLAPACK is integrated into Matpar, this prob-
lem will be corrected..

If the computer on which your data resides does not have a high speed Ethernet connection
to the Internet, your performance times will suffer. In particular, the Ethernet card should
be capable of speeds up to 100 megabits per second. UltraSparc computers come with
these high speed cards as part of their normal configuration.

Matpar can not process sparse matrices in the current release. Any sparse matrices you
want Matpar to handle must be passed via the Matlab full() command, or an error will re-
sult.

5. Matpar Calls

5. 1 Persistence

When a matrix is available for use beyond the immediate operation for which it was sent to
the server, that matrix is called persistent. The user of persistence can greatly enhance the
performance of Matpar. If, for example, matrix A is used in 10 Matpar operations, it need
be transferred only once if it is made persistent. If A is a large matrix this can result in a
big savings in communication time.

The main difference between this expert interface to Matpar, and the simplified one, is in
the use of persistence. A matrix may be declared persistent using the p_persist() command,
or the result of a Matpar operation may be made persistent, using the optional result pa-
rameter. To save space, when the persistent matrix is no longer needed it can be deleted
with the p_delete() command. A persistent matrix is referenced by an integer between 1
and 10.

Square brackets [] in the following calls denote parameters that are optional.

p_config(machine, size)

Matpar Documentation version 1.1.1

9

 Purpose: Specify which parallel computer and how many nodes will be used for
this Matlab session. In the current release, if this call is not made, Matpar uses 4
nodes on Ògrand-canyonÓ. This call my not be made to stop one parallel session
and start another, though that may be allowed in a future release. You are currently
limited to a single invocation of this call in any Matlab session.

 Parameters:
machine: name of the parallel computer on which to open a session, con-

tained in single quotes.
size: number of nodes to use on the parallel computer
returns: nothing

 Example:
p_config(ÔcosmosÕ, 32) -- Use 32 nodes on the computer cosmos.

p_add(A, B[, result, consumeFlag])

p_sub(A, B[, result, consumeFlag])

 Purpose : Add (or subtract) matrices A and B

 Parameters :
A: one of the matrices to add (subtract). scalar value implies a reference to

a persistent matrix.
B: the other matrix to add (subtract). scalar value implies a reference to a

persistent matrix.
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
otherwise the result of the matrix-matrix operation.

 Matlab equivalent : A + B, A - B

 Examples :
C = p_add(A, B)
p_sub(A, 1, 2, ÔNÕ) -- Subtract persistent matrix 1 from A. Save the re-

sult on the parallel computer as a persistent matrix, to be referenced
by the number 2.

p_bode(A, B, C, D, w)

 Purpose: Generate frequency response output matrix

Matpar Documentation version 1.1.1

10

 Parameters:
A: state matrix for the system
B: system input vector / matrix
C: system output vector / matrix
D: offsets to be added in to the final result
w: frequency vector
returns:

mag = magnitude of combined frequency response matrix for all
columns in B.
phase = phase of combined frequency response matrix for all col-
umns in B.
wOut = same as w

 Matlab equivalent: bode(a, b, c, d, iu, w)), provided B has 1 column. . If B has
more than one column, Matpar combines the information for all columns of B into a
single aggregate matrix.

 Example:
A = rand(100, 100)
B = rand(100, 1)
C = rand(1, 100)
D = zeros(1)
w = rand(1, 100) + i * rand(1, 100)
[mag, phase, wOut] = p_bode(A, B, C, D, w)

p_delete(matnum)

 Purpose: Delete a persistent matrix residing on the parallel computer

 Parameters:
matnum: the reference number of the persistent matrix to be deleted
returns: nothing

 Example :
p_persist(A, 1) % make matrix A persistent
p_delete(1) % now delete it

p_eye(m[, n], result, consumeFlag)

 Purpose : Generate identity matrix on the server

 Parameters :
m: number of rows in the identity matrix. If n is not specified, m also in-

dicates the number of columns.
n (optional): number of columns in the identity matrix

Matpar Documentation version 1.1.1

11

result: Store the result on the parallel computer as a persistent matrix to be
referenced in the future by result.

consumeFlag: If set to ÔCÕ, delete this identity matrix immediately after
the next time it is referenced. If set to ÔKÕ or any other letter, the
matrix is kept on as a persistent matrix.

returns: Identity matrix is generated as a persistent matrix on the parallel
computer. Nothing is returned.

 Matlab equivalent: eye(m[,n])

 Example:
p_eye(40, 5, ÔcÕ) -- Generate an identity matrix of order 40. Save it as

persistent matrix 5, to be consumed the next time it is referenced.

p_freqresp(A, B, C, D, w)

 Purpose: Generate frequency response output matrix

 Parameters:
A: transfer matrix for the system
B: system input vector
C: system output vector
D: offsets to be added in to the final result
w: frequency vector
returns: combined frequency response matrix for all columns of B.

 Matlab equivalent: freqresp(A, B, C, D, 1, w), provided B has 1 column. . If B
has more than one column, Matpar combines the information for all columns of B
into a single aggregate matrix.

 Example:
A = rand(100, 100)
B = rand(100, 1)
C = rand(1, 100)
D = zeros(1)
w = rand(1, 100) + i * rand(1, 100)
G = p_freqresp(A, B, C, D, sqrt(-1) * w)

p_inv(A[, result, consumeFlag])

 Purpose : Compute the inverse for the square matrix A

 Parameters :
A: the matrix to be inverted. A scalar value implies a reference to a persis-

tent matrix
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

Matpar Documentation version 1.1.1

12

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
Otherwise it returns the inverted matrix.

 Matlab equivalent : inv(A)

 Example :
A = rand(4, 4)
B = p_inv(A)

p_lu(A[, result, consumeFlag])

 Purpose : Compute LU factorization for the matrix A

 Parameters :
A: the matrix to be factored. scalar value implies a reference to a persistent

matrix
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
Otherwise it returns the factorization matrix, with U in the upper tri-
angular part, and L (without its unit diagonal elements) stored in the
lower triangular.

 Matlab equivalent : lu(A)

 Example :
A = rand(4, 4)
B = p_lu(A)

p_mult(A[, ÔTÕ] B[, ÔTÕ][, result, consumeFlag])

 Purpose : Multiply matrix A (or its transpose) times matrix B (or its transpose)

 Parameters :
A: one of the matrices to multiply. scalar value implies a reference to a per-

sistent matrix.
B: the other matrix to multiply. scalar value implies a reference to a per-

sistent matrix.
ÔTÕ: If the letter ÔTÕ appears after either A or B (or both), use the transpose.

Matpar Documentation version 1.1.1

13

result (optional): Do not return the result. Instead store it on the parallel
computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
otherwise the result of the matrix-matrix multiplication.

 Matlab equivalent : A * B

 Examples :
M = p_mult(A, B)
p_mult(A, 1, 2, ÔNÕ) -- Multiply A times persistent matrix 1. Save the re-

sult on the parallel computer as a persistent matrix, to be referenced
by the number 2.

p_multtrans(A, transFlag[, result, consumeFlag])

 Purpose : Multiply matrix A times its transpose

 Parameters :
A: the matrix to multiply. scalar value implies a reference to a persistent

matrix.
transFlag: when set to ÔTÕ, multiply AÕ * A. If set to ÔNÕ or any other

letter, multiply A * AÕ
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present. otherwise the result of the matrix-
matrix multiplication.

 Matlab equivalent : A * AÕ

 Examples :
M = p_multtrans(A, ÔTÕ)
p_multtrans(1, ÔNÕ, 2, ÔNÕ) -- Multiply persistent matrix 1 times its trans-

pose. Save the result on the parallel computer as a persistent matrix,
to be referenced by the number Ò2Ó.

p_persist(A, matnum[, consumeFlag])

Matpar Documentation version 1.1.1

14

 Purpose : Save matrix A as a persistent matrix on the parallel machine, to be refer-
enced by matnum.

 Parameters :
A: the matrix to be made persistent
matnum: the number by which to refer to this matrix in future operations
consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result

of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing

 Example :
A = rand(1000, 1000)
p_persist(A, 1, ÔCÕ) -- Make A a persistent matrix. Delete the persistent

matrix after its next use. The next time it is referenced on the paral-
lel machine, the number 1 will be its reference number.

p_pinv(A[, tol][, result, consumeFlag])

 Purpose : Compute the pseudoinverse for the matrix A

 Parameters :
A: the matrix to be inverted. A scalar value implies a reference to a persis-

tent matrix
tol (optional): the tolerance value to use. The algorithm uses singular

value decomposition, and any singular values less than tol are con-
sidered to be 0. Default tolerance is the same one used by Matlab.

result (optional): Do not return the result. Instead store it on the parallel
computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
Otherwise it returns the inverted matrix.

 Matlab equivalent : pinv(A)

 Example :
A = rand(4, 7)
p_inv(A, 8, ÔkÕ) -- Generate pseudoinverse of matrix A. Save it as a per-

sistent matrix to be referenced by the number Ô8Õ.

Matpar Documentation version 1.1.1

15

p_qr (B[, rsize][, result, consumeFlag])

 Purpose : Perform QR factorization on B, returning the R matrix.

 Parameters :
B: the matrix to factorize. scalar value implies a reference to a persistent

matrix
rsize (optional): how much of the lower right quadrant of R to return. If

rsize is 1, return the element in the highest numbered row and col-
umn. If this parameter is missing, rsize is set equal to the smallest
dimension of B. If B is square, this will return all of R.

result (optional): Do not return the result. Instead store it on the parallel
computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present, otherwise the matrix R--ignore the
values in R below the diagonal

 Matlab equivalent : triu(p_qr(B) = triu(qr(B))

 Example :
B = rand(4, 4)
R = p_qr(B, 4)

p_smult(s, A[, result, consumeFlag])

 Purpose : Multiply matrix A by the scalar s.

 Parameters :
s: the scalar by which to multiply matrix A
A: the matrix to be multiplied. A scalar value implies a reference to a per-

sistent matrix
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present.
Otherwise it returns the multiplied matrix.

 Matlab equivalent : s * A

Matpar Documentation version 1.1.1

16

 Example :
p_eye(16, 9, ÔcÕ) % generate identity matrix of order 16
p_smult(8, 9, 4, ÔkÕ) % make persistent matrix 4 with 8Õs on diagonal

p_solve(A, B[, result, consumeFlag])

 Purpose : Solve the equation AX = B, returning X

 Parameters :
A: the matrix on the left side of the equation. scalar value implies a refer-

ence to a persistent matrix.
B: the matrix on the right side of the equation. scalar value implies a refer-

ence to a persistent matrix.
result (optional): Do not return the result. Instead store it on the parallel

computer as a persistent matrix to be referenced in the future by re-
sult.

consumeFlag (optional): If set to ÔCÕ, delete the persistent matrix result
of this operation immediately after the next time it is referenced. If
set to ÔKÕ or any other letter, the matrix is kept on as a persistent
matrix.

returns: nothing if result is present. otherwise the matrix X.

 Matlab equivalent : A \ B

 Example :
A = rand(4, 4)
B = rand(4, 4)
X = p_solve(A, B)

[S =]p_svd(A[, result, consumeFlag])

[U, S, V =]p_svd(A, 0[, Uresult, UconsumeFlag, Sresult,
SconsumeFlag, Vresult, VconsumeFlag])

 Purpose : Compute the singular value decomposition for the matrix A. In the first
case, return only the singular values contained in the vector S, in decreasing order.
In the second case, return unitary matrices U and V, and diagonal matrix S con-
taining the singular values in decreasing order. In this case, only the Òeconomy
sizeÓ decomposition is used.

 Parameters :
A: the matrix for which to determine the singular values. A scalar value

implies a reference to a persistent matrix.
S: the vector / matrix containing the singular values
U, V: the unitary matrices returned. A = U * S * VÕ.
Uresult, Sresult, Vresult (optional): Do not return the results. In-

stead store them on the parallel computer as a persistent matrices to
be referenced in the future by Uresult, Sresult, and Vresult.

Matpar Documentation version 1.1.1

17

UconsumeFlag, SconsumeFlag, VconsumeFlag (optional): If set
to ÔCÕ, delete the corresponding persistent matrix result of this op-
eration immediately after the next time it is referenced. If set to ÔKÕ
or any other letter, the matrix is kept on as a persistent matrix.

returns: nothing if result parameters are present.
Otherwise it returns the singular value vector(first form) or the sin-
gular value matrix S and the unitary matrices U and V.

 Matlab e quivalent :
S = svd(A)
[U, S, V] = svd(A, 0)

 Example :
A = rand(4, 4)
p_svd(A,0, 1, ÔcÕ, 2, ÔkÕ, 3, ÔcÕ) -- Calculate singular value decomposition

of A. Store it in persistent matrix 2, and save U in matrix 1 and V in
matrix 3. U and V should not be kept beyond their next reference.

p_trace(A, transFlag)

 Purpose : Compute trace of A * AT or AT * A.

 Parameters :
A: the matrix for the computation. scalar value implies a reference to a per-

sistent matrix
transFlag: If set to ÔTÕ, calculate trace of AT * A. If set to ÔNÕ, calculate

trace of A * AT

returns: trace of the result

 Matlab equivalent : trace(A * AÕ)

 Example :
A = rand(5, 4)
x = p_trace(A, ÔNÕ)

